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Abstract. When a disk of finite radius and the surrounding medium rotate coaxially with slightly different angular
velocities, a so-called Stewartson layer exists at the edge of the disk. The properties of this layer outside the
boundary layer of the disk have been given in a previous publication. In the present paper it is shown how the radial
flow of the Ekman boundary layer turns into the axial flow of the Stewartson layer. This happens in a region of
which both the radial and axial dimensions are O(E"2 ), where E is the Ekman number.

1. Introduction

This paper is a continuation of a previous paper "The Stewartson layer of a rotating disk of
finite radius" by the author [1]. Stewartson [2] considered the shear layer existing between
two coaxial rotating planes of which the center disks rotate with slightly different angular
velocities. In [1] the shear layer at the edge (r = 1) of a rotating disk, placed in a medium
which itself rotates with an angular velocity slightly different from that of the disk has been
investigated. This shear layer reduces the axial velocity due to the influence of the boundary
(Ekman) layer at the disk from O(E"1 2 ) for r < 1 to O(E 3 '2 ) for r > 1, while in the shear
layer itself the axial velocity is O(E" 6). Here E denotes the Ekman number defined by
v/ia 2 with v the kinematical viscosity coefficient, 11 the angular velocity of the disk and a
the radius of the disk. The angular velocity of the medium is (1- E)l.

There are more configurations for which such shear layers occur. In [3] Stewartson
considered the case of two spheres again rotating with slightly different angular velocities.
Moore and Saffman [4], [5] showed that shear layers also occur at the edge of a rising body
in a rotating flow. In [6] they gave a very complete analysis of various cases of shear layers.
The occurrence of shear layers in all these cases is due to the Taylor-Proudman theorem
mentioning that outside the boundary layer the flow is independent of the axial coordinate
when there is no viscosity, see Greenspan [7]. With viscosity the flow changes only at a
distance O(E-'), see [6] and [1].

In the present paper the connection between the Ekman layer along the disk and the
Stewartson layer perpendicular to the disk is investigated. It was shown in [6] and used in [1]
that the Ekman layer is governed by the classical boundary layer equations until a distance
O(E 12 ) from the edge of the disk. Only within this distance the velocity derivatives in radial
direction become of the same order as those in the direction normal to the disk. Although
the Stewartson layer has a width O(E"'3 ), all its fluid comes from the part of the boundary
layer which lies within O(E" 2 ) from the edge (Fig. 1). Therefore the relevant scaled
coordinates in the region connecting the Ekman and Stewartson layers are r and , where
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Fig. 1. The general configuration.

r= (r- 1)E -1 1 2, z= zE - ' /2

with r, z the dimensionless physical coordinates in radial and axial directions.
If the difference between the angular velocities of disk and medium is not small, that is, if

E > O(E'16), see [1], then there exists at the edge a double-deck structure of size O(E 3
/

7
) in

radial direction. F.T. Smith [8] considered a jet negotiating a trailing edge. Due to the fact
that there is no external mainstream, a double-deck structure arises instead of a triple-deck.
The double-deck arising in the case of a rotating disk in a quiescent medium has been
calculated by van de Vooren and Botta [9]. If the medium is rotating with an angular velocity
smaller than that of the disk, a double-deck occurs at the edge of the disk, while there will be
a Stewartson layer at some distance from the edge. This will be the subject of a later
publication.

2. General equations

For an axially symmetric configuration the dimensionless equations of motion are in an
inertial system of reference

au au u2 ap a2u+ a (u) a2ul

ar z r E r2 r + az2 r

av av a2v a
uv+-- E (2.1)

ar az +r = r2 r (2.1) Z2

aw aw ap { a2w 1 aw a2wI
Oz = I_ +- -+ -aZ.r az a ar2 r ar z

2

u, v and w are the radial, azimuthal and axial velocities, resp. and p is the pressure. In order
to satisfy the equation of continuity a streamfunction is introduced by

1 a 1 a,
u=- 1 w - 1 a (2.2)r Oz r Or
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With the scaled variables

r= (r- 1)E- /2 , Sz= zE - 1' 2 (2.3)

and the substitutions

1 2 1 Oh
f = 2 EE'2 h(i,) , u = E2 e - (r, ), v = r- g(?, z),

1 Oh 1
w =- (r , ) p = 2 (1 - 2)r 2 + EE" 2 (, ) , (2.4)

we obtain, when linearizing in the small Rossby number E, the following set of equations

Oh 01A -2 - 4g + 4 = 0,

ah
Ag + d- =0, (2.5)

Oh O1iA d +2 =0,

where

a2 a2
= - + -

In order that the linearization in E is valid, we should have E < O(E 1' 2 ). Eliminating p from
(2.5) and introducing the vorticity

Ow Ou 1 12

y = z or y =-2 EE (r, z)

with

wo = Ah (2.6)

the final set of equations becomes

Ah - o = 0,

Oh
Ag + d =0, (2.7)

Aco -4 =0.
a5

3. Boundary conditions

Oh
z=O, F<O: h=O, g = 0, =0,

'z=O,05~~~~~~~~~ r>: = d =, (3.1)
I=0, F>0: h=0, g =, w=0.
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The solution of the equations for the Ekman layer (see [1]) provides the boundary conditions
at r- -o-

h 1 - e-(sin 5 + cos 5),

g---> 1e- cosz, (3.2)

to - 2e (sin - cos ) .

For F---> we have undisturbed flow

h-O , g-- 1, o---> 0. (3.3)

Finally, for --> , the flow should match to the flow in the Stewartson layer for z - 0,
r - 0, where r is the radial coordinate, r = (r - 1)E -"3 . According to [1] the solution for
h, valid in the whole r, z-plane is

1 1 sin y y3,/2 d=-
r I 30: h(rl, z) = ' y , T=- (3.4)

h(- r, z) = 1 - h(r, z) .

The solution for g, again valid in the whole Stewartson plane is

1/6 f 0

r > 0: g(r, ) = 1 + 2 sin y e dy, (3.5)

g(-r,, z) = 2- g(r,, z) .

Writing the vorticity y in the Stewartson variables we obtain

aw au _-1/6 aw
Or az aOr'

since u = EE1/2u, w = EE16w1, a/Oar = E-/3a/larl. The term au/az is O(E 1/ 2 ) and, hence,
can be neglected with regard to the term aw/ar. Taking the result for w, from [1] which is

3z 2 · -y,/2
r , -0: w1(r., z)1 = 41' J y sin y e Jo dy,

Wl(-rl, z) = w(r,, z),

we find

EE 1/6 s

r , 0: (rl ) y sin y e-y / 2 dy

y(- rl, z) = -y(rl, z) .

Hence
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I3 I/

rl 0: o(r1, z)= 2 f y sin y e 3 " dy, (3.6)
7rr1

W(-rl, z) = -o(rl, z) .

The expressions (3.4), (3.5) and (3.6) must be transformed from the rl, z-coordinates to the
r, z-coordinates. Since z = zE' 2 and r = rE 6, it is clear that

7 = z/rl = Z/r3

and can be retained using the new variables. Hence, we have for ---> 

0: h(F, ) 1 1 | sin y e 3
T/2 dy,

2 z-. y

g(, ) = 1 + sin y e 2 dy, (3.7)

o(, ) =rr 2 J y sin y e - y3 /2 dy .

Finally, the boundary conditions for z--->oo become

r : h(rF, 1 )= 1 Io sin y e y3T2 dy ,

(3.8)
h(-r, o) = 1- h(F, o), g(r, x) = g(-r, o) = 1, wo(r, oo) = w(-F, x) = 0.

4. The different regions in the F, -plane

It follows from (3.8) that for finite r the boundary condition of h at z-oo gives the value
1/2. The transition from this value to the value 1 at rF- - and to 0 at --> oo occurs for
infinitely large values of 17'. Therefore, we have to consider instead of as variable for

--oo-> . However, since all lines = constant pass through the point = 0, = 0, we take 
only as variable for larger than some large value !zm This occurs in region III (see Fig. 2).
A second complication is that at the edge of the disk = 0, z = 0, the vorticity becomes
infinitely large. In order to investigate the behaviour of the functions h, g and co near this
point, we introduce both cylindrical and parabolic coordinates by

+ iz= p eio = ( ), p integer (4.1)

Since for p->O, h = O(p3/2 ), g= O(p 1/2 ) and to = O(p - 1/2) the equations simplify to

Ah = , Ag = O, A = 0, (4.2)

since the terms containing first derivatives to are of less importance for p--- 0 than the
other terms.
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Fig. 2. The different regions in the F, -plane.

The solution of equations (4.2) with the boundary conditions (3.1) for = 0 is (p--> 0):

h = Cp 3 '2 sin 0 cos 0/2 = 2C f2/p
3

g = C2P1/2 cos 0/2 = C 2 /p , (4.3)

co = Cp - 2 sin 0/2 = C1 2 + n2 

The pressure p follows from the first and third equations (2.5) which can be written as

a- -2 a- 4g + 4 = O, +2 =0.

Near p = 0 the terms containing to are O(p - 3 / 2 ) and hence, -4g + 4 can be neglected. The

remaining equations are of Cauchy-Riemann type which means that to + 2ip1 should be a
function of r + i. With the known value of wo we find

2p = - C, p-2 cos 0/2.

More complete expressions for co and p are

(o = Cp - "2 sin 0/2 + C3p" 2 sin 0/2 + 0(p 3 / 2 ) ,

2 3 = -C, - 1" 2 COS 0/2 - C3 pl / 2 cos 0/2 + C4 + 4p cos 0 + O(p 3 12 ) .

-1 1
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Both the vorticity and the pressure have a singularity at the origin. Since Cl is positive, the
pressure is negative near the origin except possibly at the disk.

Within the region II, defined by 0 - 6 p, 0 < -- < p the parabolic coordinates g, 7i will be
taken as independent variables. The dependent variable wo becoming infinitely large at p ---> 0
will be replaced by k = pw in region II. Thus

k = C p 1/2 sin 0/2 = Cl 1 p . (4.4)

The remaining part of the , -plane will be denoted as region I.

5. The equations in the various regions

Region I. The variable will be replaced by a finite variable o- in which we will take a
constant mesh size. The transformation should also be such that the values of T = Zm/r

3 lead
to a function h(F, c), given by (3.8), which changes gradually with o-. This is realized by the
transformation

r = 2 2 , -m < < m r . (5.1)
m -

We want that F= 1 corresponds to o- = 0.3 m which leads to A = 82 m2/9 (m mod 10 = 0). In
reverse, o- follows from by aid of the quadratic equation

A + 2m2r2 4-2

a4 + a r2 + a2 = 0, where aF -m r
1- 2 a2 1 F 2

In the solution

0- =-a4a (5.2)
2

we should take the plus sign for F2 > 1 and the minus sign for 2 < 1.
The variable I is replaced by a variable A. This transformation is taken in such a way that

for equal steps in /, we obtain more points for small z (in the boundary layer). We take

sinh ,3 In
= Z, sn I 0 °S u n . (5.3)sinh/3

We want that = 2 corresponds to the integer value of Ax = n/2 (n even). This determines
the value of Zm' For /3 = 5 we find Zm = 24.5291579, which is well outside the Ekman
boundary layer. The inverse formula is

,I= I >n{ -Z Z- s + T inh(5.4)
/x6l f-ihQ

In region I equations (2.7) written in the oa, /x-variables become
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2h h 82h ah
cl (() 7 2 (o-+ () + () + 3() + C4() - = 0

a1 cr 82g a2g ah
2C(f + C(c)- + C3() + C() - + c( ) = 0, (5.5)

aa' aa aE~2 2

a2w aw a2w w g
c 1(o-) +2 + -4 - 4 c5(L) =0,

where

1 d2?/do2

c1(()= 1 C2(C)=- drld)'c (d-/dI) 2 - (d/ld )3
' (5.6)

1 d2z/dd 2 1
C3() (d/d) 2 , C4(A)- (d 3 c5() d/d '5

(dildl._ (di/d/___ dldA

Region HI. By the introduction of p we have obtained the following correspondence of points

r=-1, z=0, a=-0.3m, A =0, =0, 17=p.
r=0, z=2, 0-=0, ,u=0.5n, =p, r=p.
r=1, z=0, o- =0.3 m, = 0 , =p, 77=0.

These corner points of region II fit into the mesh points of region I. In the , 7 -variables and
introducing k according to (4.4), equations (2.7) become in region II

a2h a2h 4
+ d -2 k=O,

52 +7q p

a2g a2g 2 ( Oh ah
852 2+ p d ' (5.7)

a2k 2k k 4k ) 8( 2 + 772) (/g + ag=
2+ n 2 a2 d2 + - 'V -k- p4 -- ad) 

Region III. With a slight deviation from what has been mentioned in Sec. 4, we will take as
variables in region III rl = 1/3 = z1/3/1 and . In these variables equations (2.7) become

A,rIh - o = 0,

T, Oh ah
+ -g - + =0, (5.8)

4T, ag 4g
A,, j--3z- d-4 d- = ,

where

'(r 2 )d2 2 d82 d2 (2 d ( )
A z 213+ 9 2) -+- -8 + 2 9(5.9)

However, we again want variables in which we can take a constant mesh size. Let the point
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of intersection of the curves Tr = constant and = m be denoted by r= Fm (see Fig. 2). This
point lies at the boundary between regions I and III and therefore can, in agreement with
(5.1), also be denoted by a r-value. This means that we can replace the rl-variable by the
0r-variable according to

(5.10)
Z zT zm=m -m( 2 )

? r rm o-

Then

a 1 a d a2 1 a2 d2r,/d 2 a
aTr dTr/dc a a- (dT,/dcr) 2 a 2 (dr 1 /dcr)3 ar

The variable will be replaced by a variable A defined by

B
A -1/3

It follows from (3.7) that g = 1 + O(Z- "3 ) and w = O(Z - 2/3) for Z---> and constant.
Hence, by accepting (5.11), we shall have g = 1 + O(A), w = O(A2) for A- O0. We take A = q
when = zm with q integer. Hence

B
q-~1/3

Zm

which determines B when the integer q has been chosen. A varies from 0 to q in region III.
With

a A a a2 A2 a2 A a
and - __ __

a- 3=Za a0 9 2 aA2 9 and 

eqs (5.8) finally become

(5.11)

a2h6( a2h a2h
06--- - 0--7bX + c8O(3) 2~+

C6 (0r, A) a
2

+ c7 (0-, ) a2g + Ac8(A) a 2 +
0- 2 a0orA a +

ah
+ c1,() - = o,

aA
0201 a2 2)

6( A) ar2 + C7(0-, ) + Ac8 (A) 2 +

ag ag- 4c1 0 (O, A) -4c,,1 1 (A ) = 0,au aA

C9(r, A) a + 4c8(A) a- - = 0,acr aA

c9 (r, A) 'g + 4c8 (A)au
ag ah

+ c10(cr, A) -

(5.12)

a) 8( aw
au aA

where

197
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2 (A T1 1 

c6 (- A) -B2 92 -) 2Ar1
C' )= (dr 2 c7 (o, A) 9=- 2 dT /da '

Cs(A) 2C( A) B2 2) ( ) (d2
1/do 2 1 dT ldo (5.13)

C1o(T, A)= / (A) 
3id~/do ' 

6. Asymptotic behaviour for ---> 0

Elimination of the functions g and o from (2.7) leads to

a2h
AAAh + 4 d2 = 0,

or

d6h hh a6h a6h 2 h
7r 3 + 3 TaF4 + W6+4 .i2=0. (6.1)-- 047 +320- d---- +4 0-zr = 0.

For z--> - we have according to (3.8)

h(F, Z) = f(T) with = I/rF3 .

We investigate the asymptotics for z-- and 7 constant. Then

ah f'(r) ah 3 43 f'(T)
dz - and -- =- V1/3

Each differentiation to z produces a factor O( - 1) and each differentiation to F a factor
O( 1/3). Hence, the most important terms in (6.1) for z-->oo are

a6h a2h
d7 +4a =O (6.2)

oF a?'

and this is exactly the equation which yields (3.8) as a solution, see [1]. However, the
general solution of (6.2) may be written as

h(F, 2) = f A(w) e' e eI 3
/2 dw (6.3)

Separating A(w) in an even part Ae(w) and an odd part Ao(cw), we obtain

h(r, 2) = Ae(w) cos wFoe- 3 I/ 2 do + f Ao(o) sin cowe - °3z/2 do.

Since this solution h(r, z) makes only sense for z,---> it is clear that the values of the
integrals are determined by small values of co. The expressions of Ae(wo) and Ao(co) for

2n+lcow--O contain general terms c2 , w2o and c2,,+02 , respectively. The general term of the
first integral is



Ekman and Stewartson layers 199

C2n o)2n cos coF e- '3 /2 do

or, by taking tor=y and lr =(T/) / 3 , Fand Tr>0

2n+1

h2n(r, 7) = ( y 2 cos y e 3 dy. (6.4)

In the same way the second integral leads to

2n+2

h2n+(, Z') = c2n+y 2 1 sin y e Y/2 dy. (6.5)

For negative values of we have

h2n(r, ) = h2n(-T, Z), h2 n+1(r, ) = -h 2 n+1 (-T, Z) 

It follows that the asymptotic expansion of h(T, 5) for Z- oc will be a series of which the
consecutive terms diminish by a factor z 1/3 provided the coefficients c2, are unequal to 0.

However, solutions in the , -region connecting the Ekman and the Stewartson layers
must be matched for --> oo to solutions in the Stewartson layer for z- 0. Since remains
unaltered and z= E -/2z, we have in the Stewartson layer for z 0

2n+l

h2n(r, ) = c2nE (-+l ( y) cos y e- y ,/2

2n+2

h2n+1 (, z) = C2n+lE 6 y2
n+ sin y e-y3,2 dy.

This agrees with

h2 n+l(rl, z) = C 2 +lE 6 J 2
n+ sin for Ie - 3

z/2 d w . (6.7)

For z-> 0 and r 0 we find

h2n(rl, 0)=0, h2n+l(r, 0 ) =0.

For the original problem of the Stewartson layer, see [1], we had for h(rl, z) prescribed
values at the boundary z = 0, r, 0. It appears that the additional solutions (6.6) and (6.7)
do not disturb these prescribed boundary values. They are homogeneous solutions of
O(E' /6 ) with K = 1, 2 ... , which have to be added to the solution given in [1]. Thus we have
in the Stewartson layer

0 = EE 2h = E(El /21/ + E
21

/3t 13/2 + E
5 6

2 + ) (6.8)
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It follows that , is not affected by the homogeneous solutions, that 13/22 is exclusively
determined by the homogeneous solution (6.6) with n = 0 and that /i2 will contain, besides
the contribution found already in [1], also a term (6.7) with n = 0.

The results from the numerical calculations show that for -- o the deviation of h from its
value at z = is indeed 0(5-1/3). There is no reason to assume that any of the coefficients
c. vanishes. Hence, (6.8) is the correct expansion for E-- 0 in the Stewartson layer.

It might be added that if in (6.1) terms of O(z-'0/3) are retained, we have

a6h2 a2h2 d6h
+4 - -3ar6 2 at4az2

which gives a solution h2 = 0(Z -41 3 ) for z-oo.

7. The numerical method

The differential equations (5.5), (5.7) and (5.12) in the various regions are approximated by
difference equations using the following meshes:

regionI Ao-=1, A=1, -m<rm, O<t<n,
regionII A6=1, A7=1, 0-<<p, 07/p .
regionII Ao-=l1, AA=1, -m<aom, 0<A q.

Calculations were performed for

case 1. m = 10, n = 40, p = 10, q = 10.
case 2. m = 20, n = 80, p = 20, q = 20.

Line iteration along lines of constant o- was used in regions I and III with simultaneous
calculation of the three dependent variables h, g and w. The lines were swept in the direction
of increasing or.

Since the mesh geometries in regions I and III are different, we had to take special
precaution when applying the difference equations at boundary points (, Zm). We used in
these points the (extrapolated) mesh of region I and in this way had to obtain the variables
h, g and to in points P3 of region III with the same value of Fby linear interpolation along the
line A = q - 1.

Since the boundary between regions I and II does not fit into the mesh of region I, values
of h, g and co in points P2 in region II and belonging to the mesh of region I had to be
obtained by linear interpolation in a (, 71)-rectangle. On behalf of the calculation in region
II also h, g and w in points P., fitting into the mesh of region II had to be found by linear
interpolation in a (a, A)-rectangle. In region II the line iteration was performed along lines
of constant qr, sweeping from = p to ar = 0. This iteration was executed each time after
having arrived with the iteration in regions I and III at = m - 1.

Two difficulties were encountered. The first one was that in region III for small values of A
(large values of ) the values h, g and wo showed an oscillation in such a way that results
obtained at even values of A did not fit with the results from odd A-values. This was due to
the fact that at large values of z the first derivatives to become much larger than the second
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derivatives to z and this destroys the coupling between the difference equations at even and

odd values of A.
To remedy this difficulty a staggered grid in regions I and III was introduced, taking the

variables h and w at even values of /i and A and the variable g at odd values of .t and A.

Although this led to complications at the boundaries between regions I and III it removed

the oscillation.
The second complication was that the function h showed a large derivative ahlaA for A--> 0

(z- oo). In order to explain this, we consider the second equation (5.8). For ---> oo we have

h 1 1 - 7 sin e Y
3 /2 dy

2 ITr y

g = 1 + I2 T-/3 sin y e '' dy.

The dominant terms in the second equation (5.8) for z- oo are O(z- l) and are produced by

X a2 g 2Tl ag + r a h
Z +

213 a 2 23 aT 1 3 a 1

Substituting the formulae for h and g, given above, this expression is exactly 0. However,

when approximating the derivatives by differences there will remain in ahla a small term

O(z- '). Since

ah 3z ah ah
aA - A a-, we find A = O(A')

and this small erroneous term is responsible for the unsatisfactory behaviour found in the

numerical calculation for A--> 0.
In order to circumvent this difficulty we substitute in (5.12)

h=ho + h,, g=go+g,, = 0 +w,

with

1 1 sin y ey 3_3/2 dy, r >0

g0( 1, ) =1 + 21r1/3 - sin y eY3 I2 dy, > 0, (7.1)

2 co

%(rl' z ) = Ir- T y sin y eY.2 dy, r, > 0.

and

ho(-) = 1- ho(T,) ,

g0(- r, Z) = 2 - go(r,, ),

W0 (- Tr, 5) = -oW0(r,, ) .
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Equations (5.12) then become

2h a2h, 2 h h, ah,
c6(o-, A) 2 + C7(O-, A) + AC8(A) 2 + c9 (O, A) + 4c8(A) -ro-2 a-A - ak cr 8-A

= 1 2 f (4 cos y - y sin y) eY /2dy

Co , 3.C a2g2 + c7a0., 3 0ggah,
c6(c, ) 2 7 (- A) + Ac,8 () 2 + c(o-, ) d+ 4c8(A) g + c0 (a, A)

82 acr8A 8A ac ak a

8h , _ _2____

+ cl(A) A - 7l3 (2 sin y + 3y cos y - y2 sin y) e y3'/2dy,

d2 01 d2W1 d2w 1 d 8w1c6,(c, A) r2 + C7( A) + c(A) d2 + C9 (o, ) + 4C8(A) 8A0A2 0 ) -A a aA a

-4 A) g, (ly sin y + 8y2 cos y - y3 siny) e 3 2dy.
-4co°(tr A) -4cH(A) 0 - - - 8/3 y sin y)edy.

These equations are replaced by difference equations, while the integrals in the right hand
side have been calculated by Romberg integration.

8. Results

In both cases 1 and 2 the iteration has been continued until for all variables h, g and w the
differences between 2 consecutive iterationsteps were smaller than 10 5 for all points in the 3
regions. Although the convergence was rather slow, it may safely be assumed that the error
due to the finite number of iterationsteps is smaller than 10 - 3 . The number of iterationsteps
was 1000 for case 1 and 8000 for case 2. In the latter case a relaxation factor 0.7 had to be
added in order to ensure convergence. The difference in the results of the two cases was of
the order of 10 3. The calculations were performed on a HP 9000/720 and took 32 minutes
for case 2.

It was found that for £- o the difference

h(r, z) - ho(r) (8.1)

behaved like 0( -
1/3) = O(A). This implies that a homogeneous solution (6.4) with n = 0 is

present. When calculating the coefficient c in (6.4) a number of digits cancel in the
difference (8.1) but a not too accurate value c = -0.17 was obtained. However, no reliable
value for c, could be calculated.

The occurrence of the additional solutions (6.4) and (6.5) means that the terms in the
expansions for small E in the Stewartson layer increase like E'/ 6 as denoted for 0i by (6.8).
This is an improvement compared with the series given in [1], where the terms in the
expansions increase like E' /3 . It also means that the term ¢i2 in [1] is incomplete and that the
dciccrease of the axial velocity through the Stewartson layer is only qualitatively but not
quantitatively correct.
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The torque exerted by the rotating medium on the disk is determined by the tangential
shear stress which is proportional to

E/2 as = _EE,2 g for -- 0.

The value ag/zi = 1 in the Ekman layer leads to the torque, see [1]

M = - 2 ETpQ 2a5E /2

where a is the radius of the disk and p the density of the medium. In the region connecting
the Ekman and Stewartson layers we have a different value of ag/z and since this region
has a length O(E 1/ 2 ) in radial direction, the deviation in ag/a z from 1 gives rise to a torque
O(E).

The numerical calculations show that for r- -oo we have

ag c
z = 0:ag = 1 + -

r

which is not integrable up to r= -o. The value of c could be estimated as being 0.18. The
value of ag/az should be matched to the value in the Ekman layer, which then should be

ag cE 1/ 2

z = 0: -= E (8.2)
O1 1-r

The second term must follow from second order boundary layer theory, which also will
provide a term O(E) in the torque. It is interesting to see that formula (6.1) from [1] gives
for the tangential flow velocity g outside the Ekman layer and for r 1 the expression

El / 2

z = o: g = 1 2r(1- r) (8.3)

This gives full confidence that a second order boundary layer calculation with the outer flow
(8.3) will lead to a shear stress in accordance with (8.2).

Figure 3 shows streamlines h = constant in the , z-plane. The negative pressure near the
origin gives there an acceleration of the flow, which is too small to be visible in the figure.
For positive r the pressure increases and this causes the radially incoming flow to be turned
in axial direction before it reaches F- 4. For larger values of there is a weak recirculating
flow.

For large values of z, h becomes constant along lines - = z/r 3 = constant. This implies that
h = 0.5 for finite values of F and -- > o. The decrease from h = 1 to h = 0.5 occurs at r= -o,
Z= o and the further decrease to h = 0 at = c, = oc.

Figure 4 shows lines where the azimuthal velocity g is constant. For F < 0 g is almost only
dependent on . This changes for F > 0 since then g increases to 1 for all . For = 0 there is
an overshoot to about 1.11.

Lines of constant vorticity have been given in Fig. 5. All lines cO = constant are tangent to
the semi-axis r > 0, = 0. Approaching the origin in any other direction leads to co--> A.
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Fig. 3. Streamlines in the F, -plane.
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Fig. 5. The vorticity o in the F, -plane.

Figure 6 shows the radial velocity u and the azimuthal velocity g along the -axis for > 0.
For > -4 u assumes small negative values due to the recirculating flow. The figure also
shows the overshoot in g.

Finally, Fig. 7 presents the tangential shear stress ag/az and the vorticity, both along the
disk. For rF 0 both functions behave like /2 and hence are integrable near the origin.
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Fig. 6. The radial velocity ah/az and the azimuthal velocity g for z= 0 and F> 0.
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Fig. 7. The tangential shear stress ag/az and the vorticity 6w for = 0 and <0.

9. Conclusion

The flow in the region connecting the Ekman and Stewartson layers has been calculated by
matching it to the flow in the two separate layers. The various properties of the flow are
illustrated in Figs 3 to 7 and have been discussed in section 8 (Results).

Due to the decrease of the streamfunction as 0(1 -
1

/
3) to its final value at £-- x, it follows

that the expansion of the streamfunction in the Stewartson layer for E - 0 is

{ = (E 112ql + E2 /13 13/2 + E5/o62 + . . . )

In the original paper [1] this expansion was given as

q1 = E(E1/2 p 1 + E51/602 + ... ).

The solution qij of [1] remains unaltered, but ¢3/2 is added and 2 is slightly modified. The
new solutions in the Stewartson layer satisfy homogeneous equations and homogeneous
boundary conditions but arise from the singular point r, = 0, z = 0.
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